lundi 30 mai 2016

mercredi 25 mai 2016

Solution d'une équation différentielle du premier ordre


Pour le 26.05 : Préparer le rapide

  1. Une primitive de  $f(x)=\dfrac{x}{x^2+2}$ est : $F(x)=$
  2. $|1-\mathrm{i}\sqrt{3}|=$
  3.  La dérivée de $f(x)=(3x+2)^4$ est : $f'(x)=$
  4. $(u_n)$ est la suite géométrique de premier terme 3 et de raison 2. Le terme général est : $u_n=$
  5. $\displaystyle \lim_{x \to +\infty} \dfrac{\mathrm{e}^x}{x^6}=$

vendredi 20 mai 2016

Fin TP 1 p 282
Activité Équations différentielles : désintégration radioactive
 
Pour le 25.05 : Exercices n°6 p 287

mercredi 18 mai 2016

Pour le 19.05 : Préparer le rapide

  1.  Une primitive de  $f(x)=\mathrm{e}^{3x}+2$ est : $F(x)=$
  2.  $|3\mathrm{i}|=$
  3.  La dérivée de $f(x)=\dfrac{x-2}{x-3}$ est : $f'(x)=$
  4.  $X$ suit la loi exponentielle de paramètre $\lambda=0,0001$  : $P(X>1000)=$ 
  5. $\displaystyle \lim_{x \to +\infty} \dfrac{\ln x}{x^3}=$


mercredi 11 mai 2016


Correction Exercices n°34 p 263
Intervalles particuliers
Exercices 37 p 264 et 41 p 265

Pour le 12.05 : Préparer le rapide

  1. Une primitive de  $f(x)=\dfrac{1}{2x-3}$ est : $F(x)=$
  2. $\arg(-2)=$
  3. La dérivée de $f(x)=x\mathrm{e}^x$ est : $f'(x)=$
  4. $X$ suit la loi binomiale de paramètres $n=30$ et $p=0,3$ : $E(X)=$
  5.  $\displaystyle \lim_{x \to +\infty} x^2\sqrt{x}$

lundi 9 mai 2016

mercredi 4 mai 2016

Correction Exercices n°56 p 65 et 71 p 123
Activité : Vers la loi normale : somme de v.a. uniformes
Définition de la loi normale

Pour le 11.05 :  Exercices n°34 p 263

lundi 2 mai 2016

Rappels sur la loi binomiale :
Schéma de Bernoulli
Variable aléatoire
Utilisation de la calculatrice

Pour le 09.05 : Exercices n°50, 51, 52 p 267

Compléter le questionnaire sur la sortie à l'IUT Nancy Brabois : http://surveynuts.com/surveys/take?id=53742&c=628351481DHJD